

Small Community and Co-Op Wind Projects

Feasibility Studies

Community Renewable Energy Association

Paul R. Woodin

<u>pwoodin@gorge.net</u>

509.261.0219

There are several Sizes of Wind Projects

Small Home/Farm projects

Projects use wind, solar, batteries, and generators to take farms off the grid. Some include net metering.

Small Community/Cooperative Projects

- > Support distributed generation and sell power through Power Purchase Agreements with utilities.
- > These projects are attractive because they can become community revenue generators, involve schools and local interests, and help supplement future power growth

Large Commercial Projects

Sited in areas of strong winds, transmission access, and market demand.

DTU

The Story of a Power System Transformed \equiv

WIND ENERGY IN GERMANY:
Geographic distribution of 20,485 MW, 18,433 wind turbines;
March 1, 2007 (numbers in MW)

Purpose of Wind Power Feasibility Studies

Wind projects are financially viable when there is a Power Purchase Agreement (PPA) with enough price to finance a project

Feasibility studies help determine:

- Power Purchase interest
- > Transmission Access
- Wind Resource
- Project Development Costs
- Project Financing

to determine if a project is financially viable

Feasibility Studies

Feasibility Studies are generally divided into several Phases

Phase I

- Preliminary magnitudeof-scale cost estimates
- Exploration of potentialPower Purchase interest
- Evaluation of funding grants, loans, equity
- Economic Modelling to determine project viability

Phase II

If the project appears viable

- Firm up project design and cost
- Help finalize PPA's
- Finalize Economic
 Modelling to secure
 financing
- Help secure project financing

Feasibility Studies Preliminary Studies

Power Purchase Potential

Each State has different rules for power sales. Know your state's rules before you spend any time on other feasibility issues.

Transmission

- Know early on if your site is close enough to correctly sized transmission to accommodate project
- Work with utility to determine line load capacity
- If promising, Initiate preliminary utility transmission studies

Wind Regime

- Work with meteorologist to install met towers in potential site locations.
- Collect and analyze wind data.
- > The wind regime should be confirmed well in advance of other activities
- At least one year of met data from the site or meteorologist correlated data from other local sites.

Feasibility Studies Preliminary Studies

Turbine Selection

- Develop equipment bids for potential turbine manufacturers
- Turbine choices are guided by wind regime, desired power production, and turbine specifications (reliability, power curves, performance, etc.).
- Turbines are scarce for small projects at this time.

Site Layout

- Develop preliminary project concept designs:
 - > Maps

Balance of Plant

- Roads, turbine pads
- Electrical Infrastructure
- Sub-station /interconnection point

Feasibility Studies Balance of Plant Estimates

Cost Assessment

- »Develop order-of-magnitude project cost estimates
- >Project Management costs
- >Turbine Installation
 - > Erection Crews
 - Cranes
 - > Foundations
 - Civil Engineering and construction (roads, crane pads, etc.
 - Commissioning

Feasibility Studies Balance of Plant Estimates

Electrical

- Design and Construction estimates of
 - Electrical infrastructure
 - Wind farm/Utility inter-tie
 - Flicker study
 - Sub-station metering
 - Utility revenue metering – safety trip schemes, etc

Permitting Costs

- > Environmental requirements
 - Avian studies (site Dependant)
 - Cultural and vegetation studies
- Local and/or State permit process – Conditional Use
- FAA permit and lighting requirements (turbines over 200' high)

Feasibility Studies Financial Estimates

Financing

- Determine Financial path to fund project
- **Equity participants**
 - >ITC, grants, accelerated depreciation, etc
- Debt participants
 - Bank Loans, etc
- Other funding
 - **USDA VAPG's, REAPS**
 - government grants, Green Tags, State Incentives

Financing

- Financial Institutes look for:
 - Well defined wind regime with 1 or more years of production level wind data
 - Power Purchase price and length of contract sufficient to provide debt coverage. 10-15 yr loans typical
 - Permits and Environmental details

Feasibility Studies Economic Analysis

- Economic Models typically look at:
 - Project development costs, equity, and debt
 - > Projected cash flows, debt maintenance
 - Production Tax Credits, ITC & Grants, Accelerated Depreciation
 - Operating Costs, Land owner lease costs
 - Anticipated Power production and sales
- Models can vary multiple inputs to evaluate various scenarios to find optimum project economics

Completion of Feasibility Studies

A good feasibility study determines if a project is viable. It provides investors and financiers with the details necessary to commit to a project.

A business plan is developed and construction financing obtained.

Power Purchase contracts, turbine purchase, and other project costs can be secured and the project construction started.